

11MHz、轨对轨输入输出 CMOS 运算放大器

概述

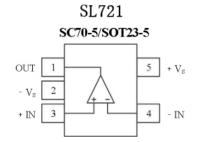
SL721 (单路)、 SL722 (双路)、 SL723 (单路带关断)和 SL724 (四路)是一款低噪声、低压低功耗的运算放大器,可被广泛应用。 SL721/2/3/4 具有 11MHz 的增益带宽积和 10V/μs 的转换速率,其中, SL723 具有断电禁用功能,可以将电源电流降低到 1μA 以下。

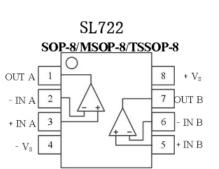
SL72 1/2/3/4 的设计是为了在低压低噪声系统中提供最佳性能,它们为大型负载提供轨对轨输出摆幅,芯片的输入共模电压范围包括地,最大输入失调电压为 3.5mV。芯片可工作在工业温度范围(-40℃至+125℃)内,工作电源电压范围为 2.3V 到 5.5V。

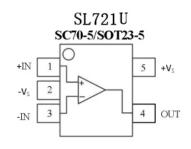
SL721的封装类型主要有 SC70-5, SOT23-5 和 SOP-8, SL722 封装类型主要有 SOP-8, MSOP-8, TSSOP-8 和 DFN2*2-8, SL723 的封装类型主要包括 SOT23-6 和 SOP-8, SL724 的封装类型主要包括 SOP-14, TSSOP-14 和 QFN-16。

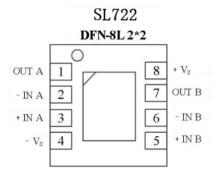
1

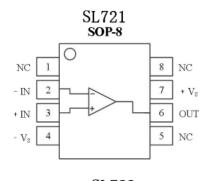
特点

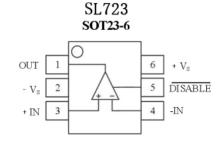

- 高转换速率: 10V/μs
- 增益带宽积: 11MHz
- 达到 0.1%的建立时间: 0.35μs
- 过载恢复时间: 0.6μs
- 低噪声: 12nV/√*Hz* @ f=1kHz
- 输入输出轨对轨
 - ➤ 输入电压范围: -0.1V 至+5.6V (V_s=5.5V)
- 静态电流: 1000μA(Typ.)
- 工作电压范围: +2.3V 至+5.5V
- 工作温度范围: -40℃至+125℃

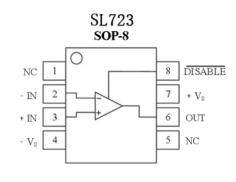

应用

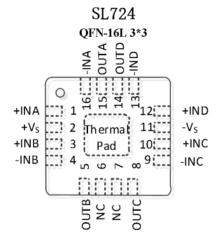

- 传感器
- 音频
- 有源滤波器
- A/D 转换器
- 通讯
- 测试设备




管脚分布







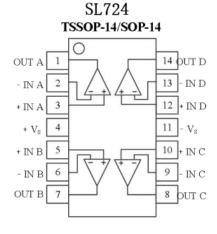


图 1 管脚分布

管脚描述

符号	描述
-IN	负极 (反相) 输入端。
+IN	正极(同相)输入端。
-INA, -INB -INC, -IND	运算放大器的反相输入端,其输入电压范围从($V_{S-}0.1V$)至($V_{S+}+0.1V$)。
+INA,+INB +INC, +IND	运算放大器的同相输入端,其输入电压范围与反相输入端的相同。
$+V_S$	正电源端, 其电压范围为 2.3V 至 5.5V(±1.15V 至±2.75V)。
-V _S	负电源端,单电源供电时它与地连接。
OUT	输出端。
OUTA, OUTB OUTC, OUTD	运算放大器的输出端。
DISABLE	使能端。
NC	无连接。

订购信息

型号	封装	包装数量
SL721XC5	SC70-5	卷盘,3000
SL721XT5	SOT23-5	卷盘,3000
SL721UXC5	SC70-5	卷盘, 3000
SL721UXT5	SOT23-5	卷盘, 3000
SL721XS8	SOP-8	卷盘,4000
SL722XV8	MSOP-8	卷盘,3000
SL722XS8	SOP-8	卷盘,4000
SL722XT8	TSSOP-8	卷盘,3000
SL722XF8	DFN-8	卷盘,3000
SL723XT6	SOT-23-6	卷盘,3000
SL723XS8	SOP-8	卷盘,4000
SL724XS14	SOP-14	卷盘, 2500
SL724XT14	TSSOP-14	卷盘,3000
SL724XF16	QFN-16	卷盘,3000

绝对最大额定值 (TA= 25℃)

符号	参数	额定值	单位
V_{S}	电源电压	±3,6(单电源)	V
V_{CM}	24 4A 2 MII	$V_{S-} - 0.3 \stackrel{\frown}{=} V_{S+} + 0.3$	V
V_{DM}	单输入端	±5	V
T _A	工作温度范围	-40至125	°C
T_{STG}	储存温度范围	-65 至+150	°C
T_{J}	结温	150	°C
ESD(HBM)	静电释放(人体模型)	±8	kV

备注:

- 1. 超出绝对最大额定值可能会致使器件的永久性损坏。以上罗列的仅为部分关键性的参数,并不意味其他未被列出的参数可以超出正常的使用范围。长时间在绝对最大额定值下工作可能会影响到器件的可靠性;
- 2. 芯片在任何时候都不能超过最大结温。

电气参数

 $(V_S = 5V, T_A = +25$ ℃, $V_{CM} = V_S/2, V_O = V_S/2, R_L = 10$ kΩ 连接至 $V_S/2$, 除非另有说明)

符号	参数	条件	最小值	典型值	最大值	单位
输入特性						
Vos	输入失调电压		-3.5	0.5	+3.5	mV
Vos TC	输入失调电压漂移	T _A =-40℃至+125℃		3		μV/°C
I_{B}	输入偏置电流	$V_{CM}=V_S/2$		1		pA
Ios	输入失调电流			1		pA
V_{CM}	共模输入电压范围	T _A =-40℃至+125℃	V _S -0.1		V _{S+} +0.1	V
		$-0.1V < V_{CM} < 3.5V$	70	90		
CLAPP	+++ ++++ +4+++++++++++++++++++++++++++	T _A =-40℃至+125℃		80		1D
CMRR	共模抑制比	-0.1V <v<sub>CM<5.1V</v<sub>	65	85		dB
		T _A =-40℃至+125℃		75		-
	A _{VOL} 开环电压增益	R_L =600 Ω , 0.2V <v<sub>0<4.8V</v<sub>	80	88		
		T _A =-40℃至 125℃		80		-
A _{VOL}		$R_L=10k\Omega, \\ 0.1V < V_0 < 4.9V$	90	102		dB
		T _A =-40℃至+125℃		90		
俞出特性						
$ m V_{OH}$	高输出电压摆幅	R_L =600 Ω		V _S 65		mV
V OH	同制山 化压纸帽	R_L =10 $k\Omega$		V_S -7		III V
3 7	区松山市区 押幅	$R_L=600\Omega$		50		3.7
V_{OL}	低输出电压摆幅	$R_L=10k\Omega$		5		mV
T		拉电流		70		
I_{SC}	短路输出电流	灌电流		70		mA
电源特性						
V_{S}	工作电压范围		2.3		5.5	V
PSRR	电源抑制比	V_S =2.7 V 至 5 V_{CM} = V_S +0.5 V	70	90		dB
1 0141	C 6217 L 161 NO	T _A =-40℃至+125℃		85		u.D
I_Q	静态电流	$I_{OUT}=0$		1000	1300	A
1()	时心吐机	T _A =-40℃至+125℃			1700	μA
I _{shut}	禁用时电源电流 (仅限 SL723)			0.1	2	μА

电气参数

 $(V_S = 5.0V, T_A = +25$ °C, $V_{CM} = V_S/2, V_O = V_S/2, R_L = 10$ kΩ 连接至 $V_S/2$, 除非另有说明)

符号	参数	条件	最小值	典型值	最大值.	单位		
噪声特性	噪声特性							
	输入电压噪声密度	f=1kHz		12		nV/\sqrt{Hz}		
e _n	和八 电压噪户省及	f=10kHz		8		nV/\sqrt{Hz}		
断电禁用((仅限 SL723)							
	开启时间			1		μs		
	关断时间			0.3		μs		
	DISABLE 关断电压				0.8	V		
	DISABLE开启电压		2			V		
动态特性								
GBP	增益带宽积			11		MHz		
φο	相位裕度			60		٥		
SR	压摆率	G=1,2V 输出阶跃		10		V/µs		
t_{S}	达到 0.1%建立时间	G=1,2V 输出阶跃		0.35		μs		
t_{OR}	过载恢复时间	$V_{IN} \times G = V_S$		0.6		μs		

典型性能特性

(V_S =+5V, T_A =25 $^{\circ}$ C, V_{CM} = V_S /2, V_O = V_S /2, R_L =10kΩ 连接至 V_S /2, 除非另有说明)

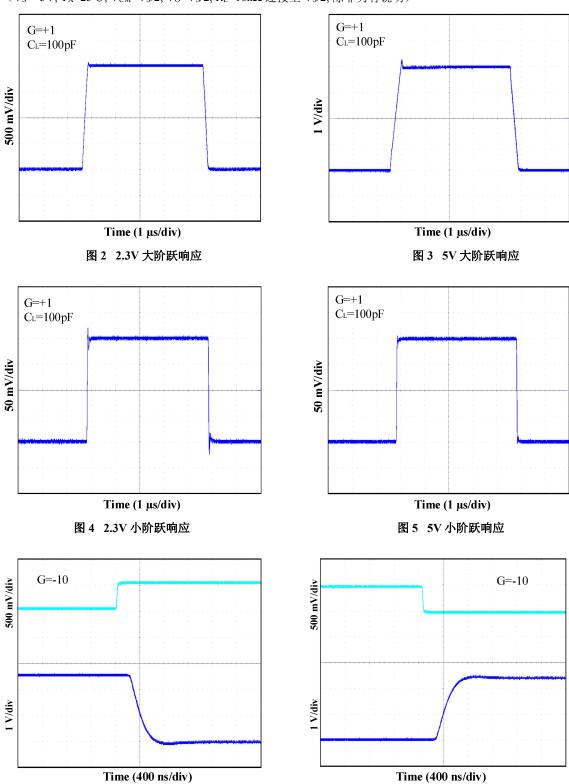


图 6 正过载恢复

图 7 负过载恢复

典型性能特性

 $(V_S$ =+5V, T_A =25 $^{\circ}$ C, V_{CM} = V_S /2, V_O = V_S /2, R_L =10 $k\Omega$ 连接至 V_S /2, 除非另有说明.)

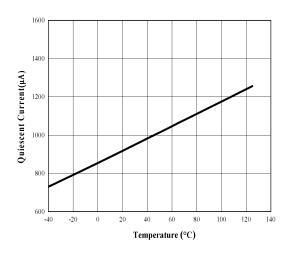


图 8 2.3V 静态电流与温度的关系

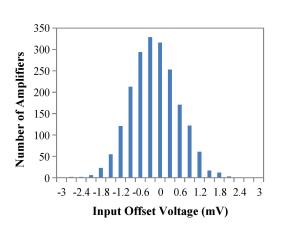


图 10 输入失调电压占比

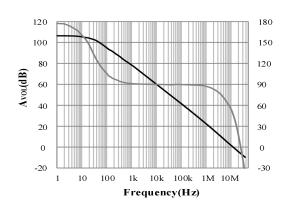


图 12 开环增益和相位与频率的关系

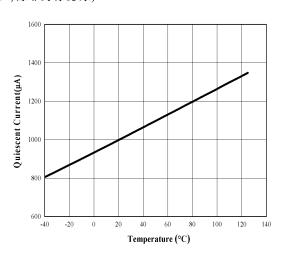


图 9 5V 静态电流与温度的关系

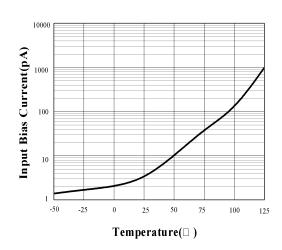


图 11 输入偏置电流与温度的关系

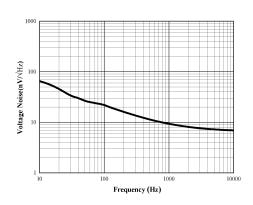


图 13 输入电压噪声谱密度与频率的关系

1. 工作特性

SL72x 工作电压范围为 2.3V 至 5.5V ←1.15V 至±2.75V) 工作温度范围为—40℃ 到+125℃。在典型特性中,展示了与工作电压或温度有显著差异的参数。.

2. 容性负载及其稳定性

SL72x 可以在单位增益电路中直接驱动 1000pF 电容下保证不振荡,单位增益跟随器对容性负载最敏感,器直接驱动电容负载降低了放大器的相位裕度,从而导致振铃甚至振荡。如果应用电路中需要更大的容性驱动能力,则应该在输出和容性负载之间使用隔离电阻,如图 14 所示,隔离电阻 R_{ISO} 和负载电容 C_L 形成零点以增加稳定性。 R_{ISO} 阻值越大, V_{OUT} 将会更稳定,注意,由于 R_{ISO} 和 R_L 形成分压器,这种方法会导致增益精度的损失。

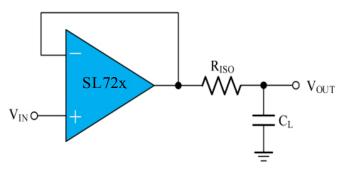


图 14 间接驱动大的容性负载

改进版电路如图 15 所示,其提供了直流精度和交流稳定性,电阻 R_F 通过将反相信号与输出相连接来保证直流精度。

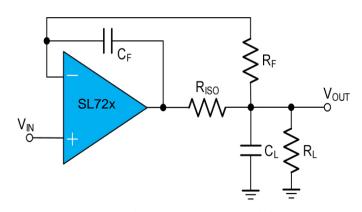


图 15 间接驱动电容负载与直流精度

3. 输入偏置电流

SL72x 系列是 CMOS 运放系列芯片,具有非常低的 pA 级输入偏置电流。低输入偏置电流允许放大器用于高阻抗电源的应用,但必须注意尽量减少 PCB 表面泄漏。

4. 电源布局和旁路

SL72x 的工作电压范围在单电源时为+2.3V 至+5.5V,双电源时为±1.15 至±2.75V。对于单电源操作,使用陶瓷电容器(即 0.01μ F 到 0.1μ F)绕过电源 V_s ,陶瓷电容器应位于 V_s 引脚附近(为获得良好的高频性能,应在 2mm 以内)。双电源操作时, V_{S+} 和 V_{S-} 引脚应分别通过 0.1μ F 陶瓷电容器旁路到地。大容量电容器(即 2.2μ F 或更大的钽电容)在 100mm 范围内,提供大的、慢的电流以及更好的性能。这种大容量电容器可以与其他模拟部件共用。

PCB 板应通过减少运放输入、输出杂散电容的数量来优化性能。为了减少杂散电容,将外部元件尽可能靠近器件来使连线长度和宽度最小化,同时尽可能使用贴片器件。对于运放,强烈建议将其直接焊接到板上,尽可能保持高频大电流的环路面积小,以减少电磁干扰(电磁接口)。

5. 接地

在 SL72x 电路设计中,接地层是非常重要的,感应地回线中电流路径的长度会产生不需要的电压噪声,宽的接地面积会降低寄生电感。

6. 输入输出耦合

为了最小化电容耦合,输入输出信号线不应该平行,这有助于减少不必要的正面 反馈。

7. 布局指南

为了实现电路的最佳运行性能,在设计印刷电路板(PCB)时,应遵循以下的布局原则:

A.为了尽可能地降低寄生电容的大小和塞贝克效应,外部的器件(如反馈电阻等)应该尽可能地靠近芯片。

B.输入信号的导线应该尽可能的短,并且应该远离电源线或其他数字信号线。

C.每个电源引脚和地之间应该连接一个低 ESR、0.1-μF 的陶瓷旁路电容,并尽可能地靠近芯片。在单电源的场合中,使用一个电容连接至电源和地之间。

D.关键的布线周围可以考虑加一个低阻、受驱动的保护环,保护环可以显著地减少附近不同电位的漏电流。

8. 差分放大器

图 16 中的电路为差分放大电路。如果电阻比率相等($R_4/R_3=R_2/R_1$),那么 $V_{OUT}=(V_p-V_n)*R_2/R_1+V_{REF_s}$

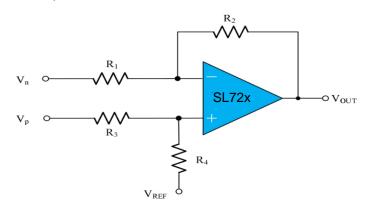


图 16 差分放大器

9. 仪表放大器

图 17 中的电路具有高输入阻抗,所执行的功能与图 16 相同。

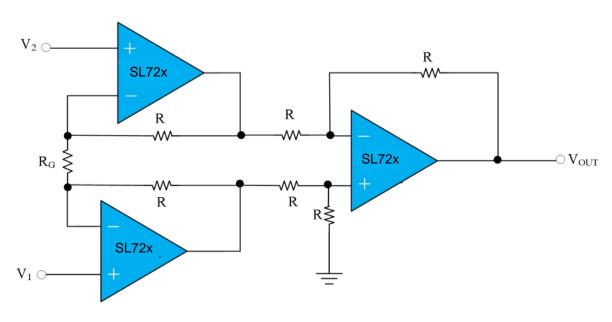
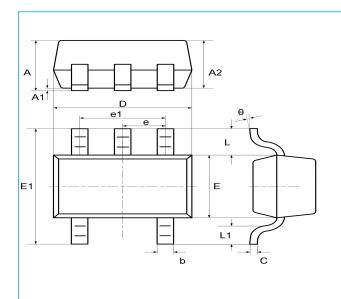
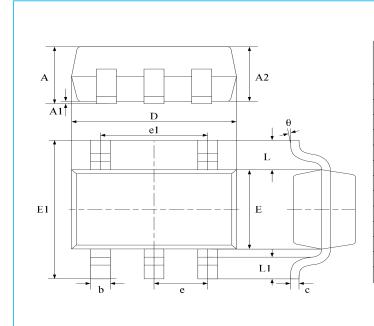


图 17 仪表放大器

10. 低通有源滤波器

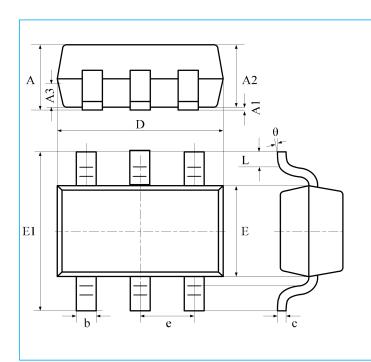

图 18 所示的低通滤波器的 DC 增益为($-R_2/R_1$),-3dB 角频率为 $1/(2\pi R_2C)$ 。确保滤波器带宽在放大器的带宽之内。大的反馈电阻与寄生电容耦合,会引起高速放大器的振铃或震荡等不良影响,保持电阻阻值尽可能小,并与输出负载考虑相一致。

www.slkormicro.com

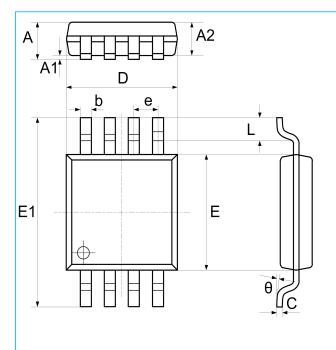


SC70-5

	Dimensions		Dimensions	
Symbol	In Mill	imeters	In In	ches
	Min	Max	Min	Max
A	0.800	1.100	0.035	0.043
A1	0.000	0.100	0.000	0.004
A2	0.800	0.900	0.035	0.039
b	0.150	0.350	0.006	0.014
С	0.080	0.150	0.003	0.006
D	1.8500	2.150	0.079	0.087
Е	1.100	1.400	0.045	0.053
E1	1.950	2.200	0.085	0.096
e	0.850) typ.	0.026	typ.
e1	1.200	1.400	0.047	0.055
L	0.42 ref.		0.02	l ref.
L1	0.260	0.460	0.010	0.018
θ	0°	8°	0°	8°

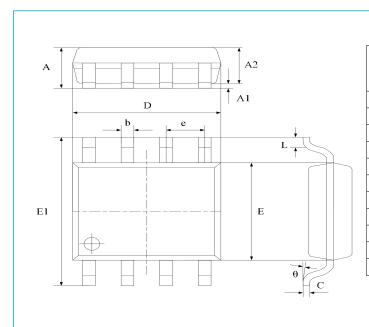

SOT23-5

Dimensions		Dimensions	
In Mill	imeters	In Ir	ches
Min	Max	Min	Max
1.040	1.350	0.042	0.055
0.040	0.150	0.002	0.006
1.000	1.200	0.041	0.049
0.380	0.480	0.015	0.020
0.110	0.210	0.004	0.009
2.720	3.120	0.111	0.127
1.400	1.800	0.057	0.073
2.600	3.000	0.106	0.122
0.950 typ.		0.03	7 typ.
1.900	1.900 typ.		3 typ.
0.70	0.700 ref.		8 ref.
0.300	0.600	0.012	0.024
0°	8°	0°	8°
	In Mill Min 1.040 0.040 1.000 0.380 0.110 2.720 1.400 2.600 0.950 0.700 0.300	In Millimeters Min Max 1.040 1.350 0.040 0.150 1.000 1.200 0.380 0.480 0.110 0.210 2.720 3.120 1.400 1.800 2.600 3.000 0.950 typ. 1.900 typ. 0.700 ref. 0.300 0.600	In Millimeters In I

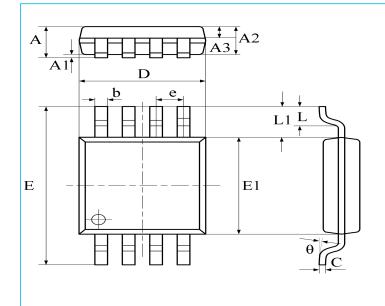


SOT23-6

Symbol	Dimensions In Millimeters				
•	Min	NOM	Max		
A	1.050	1.150	1.250		
A1	0.000	0.060	0.150		
A2	1.000	1.100	1.200		
A3	0.550	0.650	0.750		
D	2.820	2.920	3.020		
Е	1.510	1.610	1.710		
E1	2.600	2.800	3.000		
b	0.300	0.400	0.500		
e	0.950BSC				
θ	0°	4°	8°		
L	0.300	0.420	0.570		
c	0.100	0.152	0.200		

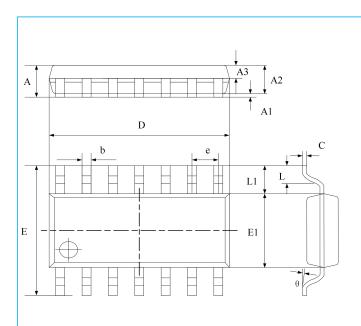

MSOP-8

	Dimensions		Dime	nsions
Symbol	In Millimeters		In In	ches
	Min	Max	Min	Max
A	0.800	1.100	0.033	0.045
A1	0.050	0.150	0.002	0.006
A2	0.750	0.950	0.031	0.039
b	0.290	0.380	0.012	0.016
С	0.150	0.200	0.006	0.008
D	2.900	3.100	0.118	0.127
Е	2.900	3.100	0.118	0.127
E1	4.700	5.100	0.192	0.208
e	0.650 typ.		0.026	5 typ.
L	0.400	0.700	0.016	0.029
А	00	Q٥	00	Q٥

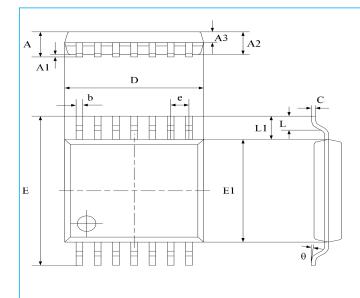


SOP-8

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	1.370	1.670	0.056	0.068
A1	0.070	0.170	0.003	0.007
A2	1.300	1.500	0.053	0.061
b	0.306	0.506	0.013	0.021
С	0.203	3 typ.	0.008 typ.	
D	4.700	5.100	0.192	0.208
Е	3.820	4.020	0.156	0.164
E1	5.800	6.200	0.237	0.253
e	1.270 typ.		0.05	0 typ.
L	0.450	0.750	0.018	0.306
θ	0°	8°	0°	8°

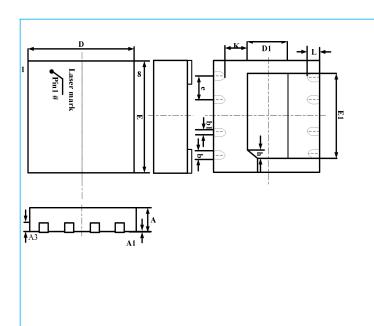

TSSOP-8

		Dimensio	ons	
Symbol		In Millime	eters	
	Min	Nom	Max	
A	-	-	1.200	
Al	0.050	-	0.150	
A2	0.900	1.000	1.050	
A3	0.390	0.440	0.490	
b	0.200	-	0.280	
С	0.130	-	0.170	
D	2.900	3.000	3.100	
Е	6.200	6.400	6.600	
E1	4.300	4.400	4.500	
e	0.65	0.65BSC		
L	0.450	-	0.750	
L1	1.000 ref			
θ	0°	-	8°	

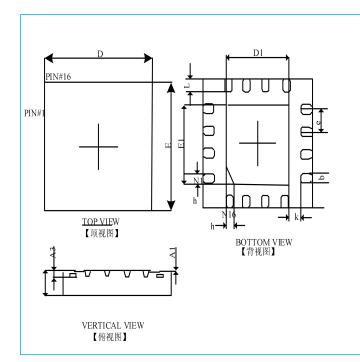


SOP-14

Symbol	Dimensions In Millimeters			nsions nches
-	Min	Max	Min	Max
A	1.450	1.850	0.059	0.076
A1	0.100	0.300	0.004	0.012
A2	1.350	1.550	0.055	0.063
A3	0.550	0.750	0.022	0.031
b	0.406typ.		C	0.017typ.
С	0.20	3typ.	(0.008typ.
D	8.630	8.830	0.352	0.360
Е	5.840	6.240	0.238	0.255
E1	3.850	4.050	0.157	0.165
e	1.270	typ.	0.05	0 typ.
L1	1.040 ref.		0.04	1 ref.
L	0.350	0.750	0.014	0.031
θ	2°	8°	2°	8°


TSSOP-14

	Dimensions In Millimeters		Dimensions	
Symbol			In Inches	
	Min	Max	Min	Max
A	-	1.200	-	0.0472
A1	0.050	0.150	0.002	0.006
A2	0.900	1.050	0.037	0.043
A3	0.390	0.490	0.016	0.020
b	0.200	0.290	0.008	0.012
С	0.130	0.180	0.005	0.007
D	4.860	5.060	0.198	0.207
Е	6.200	6.600	0.253	0.269
E1	4.300	4.500	0.176	0.184
e	0.650 typ.		0.0256 typ.	
L1	1.000 ref.		0.0393 ref.	
L	0.450	0.750	0.018	0.031
θ	0°	8°	0°	8°



DFN8-L 2*2

	Dimensions			
Symbol	In Millimeters			
	Min	Nom	Max	
A	0.700	0.750	0.800	
A1	0.000	0.020	0.050	
A3	0.203REF			
b	0.200	0.2500	0.300	
b1	0.180REF			
D	1.900	2.000	2.100	
Е	1.900	2.000	2.100	
e	0.500BSC			
D1	0.500	0.600	0.700	
E1	1.100	1.200	1.300	
L	0.300	0.350	0.40	
K	0.35REF			
h	0.200REF			

QFN16-L 3*3

	Dimensions			
Symbol	In Millimeters			
	Min	Nom	Max	
A	0.700	0.750	0.800	
A1	0.000	0.020	0.050	
A3	0.203REF			
b	0.200	0.2500	0.300	
D	2.900	3.000	3.100	
Е	2.900	3.000	3.100	
e	0.500BSC			
D1	1.700	1.800	1.900	
E1	1.700	1.800	1.900	
L	0.200	0.300	0.400	
K	0.300REF			
h	0.300REF			